MySQL INDEXES

index

B+ Tree

数据结构

平衡树(Balance Tree,BT) 指的是,任意节点的子树的高度差都小于等于1。

B Tree 指的是 Balance Tree,也就是平衡树。平衡树是一颗查找树,并且所有叶子节点位于同一层。并不一定是二叉的。

特性

  1. 关键字集合分布在整颗树中;
  2. 任何一个关键字出现且只出现在一个结点中;
  3. 搜索有可能在非叶子结点结束;
  4. 其搜索性能等价于在关键字全集内做一次二分查找;
  5. 自动层次控制;

B+ Tree 是一个n叉树,是基于 B Tree 和叶子节点顺序访问指针进行实现,它具有 B Tree 的平衡性,并且通过顺序访问指针来提高区间查询的性能。

在 B+ Tree 中,一个节点中的 key 从左到右非递减排列,如果某个指针的左右相邻 key 分别是 keyi 和 keyi+1,且不为 null,则该指针指向节点的所有 key 大于等于 keyi 且小于等于 keyi+1。

B+树是应文件系统所需而出的一种B-树的变型树。一棵m阶的B+树和m阶的B-树的差异在于:

  1. 有n棵子树的结点中含有n个关键字,每个关键字不保存数据,只用来索引,所有数据都保存在叶子节点。
  2. 所有的叶子结点中包含了全部关键字的信息,及指向含这些关键字记录的指针,且叶子结点本身依关键字的大小,非递减的顺序链接。
  3. 所有的非终端结点可以看成是索引部分,结点中仅含其子树(根结点)中的最大(或最小)关键字。

通常在B+树上有两个头指针,一个指向根结点,一个指向关键字最小的叶子结点。

特性

  1. 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好

    是有序的;

  2. 不可能在非叶子结点命中;

  3. 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储

    (关键字)数据的数据层;

  4. 更适合文件索引系统;

操作

进行查找操作时,首先在根节点进行二分查找,找到一个 key 所在的指针,然后递归地在指针所指向的节点进行查找。直到查找到叶子节点,然后在叶子节点上进行二分查找,找出 key 所对应的 data。

插入删除操作会破坏平衡树的平衡性,因此在进行插入删除操作之后,需要对树进行分裂、合并、旋转等操作来维护平衡性。

b+树与b树比较更适合数据库索引

  1. B + 树的磁盘读写代价更低:B + 树的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对 B 树更小,如果把所有同一内部节点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多,一次性读入内存的需要查找的关键字也就越多,相对 IO 读写次数就降低了。树的非叶子结点里面没有数据,这样索引比较小,可以放在一个 blcok(或者尽可能少的blcok)里面。避免了树形结构不断的向下查找,然后磁盘不停的寻道,读数据。这样的设计,可以降低 io 的次数。
  2. B + 树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。
  3. B+树便于范围查询:由于 B + 树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是 B 树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以 B + 树更加适合在区间查询的情况,所以通常 B + 树用于数据库索引。
  4. 遍历所有的数据更方便:B+树只要遍历叶子节点就可以实现整棵树的遍历,而其他的树形结构 要中序遍历才可以访问所有的数据。

b+树与红黑树比较更适合数据库索引

红黑树等平衡树也可以用来实现索引,但是文件系统及数据库系统普遍采用 B+ Tree 作为索引结构,这是因为使用 B+ 树访问磁盘数据有更高的性能。

  1. B+ 树有更低的树高

    数据库文件实际存储在磁盘中,定位一行信息需要查找该行文件所在柱面号,磁盘号,扇区号,页号这个阶段是很耗费时间的。每一次的定位请求意味着要做一次IO操作,也意味着成倍的时间消耗。因此减少IO查询的次数是提高查询性能的关键。而IO的查询次数就是索引树的高度,高度越低查询的次数越少。

  2. 磁盘访问原理

    操作系统一般将内存和磁盘分割成固定大小的块,每一块称为一页,内存与磁盘以页为单位交换数据。数据库系统将索引的一个节点的大小设置为页的大小,使得一次 I/O 就能完全载入一个节点。

    如果数据不在同一个磁盘块上,那么通常需要移动制动手臂进行寻道,而制动手臂因为其物理结构导致了移动效率低下,从而增加磁盘数据读取时间。B+ 树相对于红黑树有更低的树高,进行寻道的次数与树高成正比,在同一个磁盘块上进行访问只需要很短的磁盘旋转时间,所以 B+ 树更适合磁盘数据的读取。B+ 树在存储结构上避免了树形结构不断的向下查找,然后磁盘不停的寻道,读数据。

  3. 磁盘预读特性

    为了减少磁盘 I/O 操作,磁盘往往不是严格按需读取,而是每次都会预读。预读过程中,磁盘进行顺序读取,顺序读取不需要进行磁盘寻道,并且只需要很短的磁盘旋转时间,速度会非常快。并且可以利用预读特性,相邻的节点也能够被预先载入。

MySQL 索引

索引是在存储引擎层实现的,而不是在服务器层实现的,所以不同存储引擎具有不同的索引类型和实现。

B+Tree 索引

是大多数 MySQL 存储引擎的默认索引类型。

因为不再需要进行全表扫描,只需要对树进行搜索即可,所以查找速度快很多。

因为 B+ Tree 的有序性,所以除了用于查找,还可以用于排序和分组。

可以指定多个列作为索引列,多个索引列共同组成键。

适用于全键值、键值范围和键前缀查找,其中键前缀查找只适用于最左前缀查找。如果不是按照索引列的顺序进行查找,则无法使用索引。

InnoDB 的 B+Tree 索引分为主索引和辅助索引。主索引的叶子节点 data 域记录着完整的数据记录,这种索引方式被称为聚簇索引。因为无法把数据行存放在两个不同的地方,所以一个表只能有一个聚簇索引。

辅助索引的叶子节点的 data 域记录着主键的值,因此在使用辅助索引进行查找时,需要先查找到主键值,然后再到主索引中进行查找。

哈希索引

哈希索引能以 O(1) 时间进行查找,但是失去了有序性:

  • 无法用于排序与分组;
  • 只支持精确查找,无法用于部分查找和范围查找。

InnoDB 存储引擎有一个特殊的功能叫“自适应哈希索引”,当某个索引值被使用的非常频繁时,会在 B+Tree 索引之上再创建一个哈希索引,这样就让 B+Tree 索引具有哈希索引的一些优点,比如快速的哈希查找。

全文索引

MyISAM 存储引擎支持全文索引,用于查找文本中的关键词,而不是直接比较是否相等。

查找条件使用 MATCH AGAINST,而不是普通的 WHERE。

全文索引使用倒排索引实现,它记录着关键词到其所在文档的映射。

InnoDB 存储引擎在 MySQL 5.6.4 版本中也开始支持全文索引。

空间数据索引

MyISAM 存储引擎支持空间数据索引(R-Tree),可以用于地理数据存储。空间数据索引会从所有维度来索引数据,可以有效地使用任意维度来进行组合查询。

必须使用 GIS 相关的函数来维护数据。

索引优化

独立的列

在进行查询时,索引列不能是表达式的一部分,也不能是函数的参数,否则无法使用索引。

例如下面的查询不能使用 actor_id 列的索引:

例如下面的查询不能使用 actor_id 列的索引:

1
SELECT actor_id FROM sakila.actor WHERE actor_id + 1 = 5;

多列索引

在需要使用多个列作为条件进行查询时,使用多列索引比使用多个单列索引性能更好。例如下面的语句中,最好把 actor_id 和 film_id 设置为多列索引。

1
2
SELECT film_id, actor_ id FROM sakila.film_actor
WHERE actor_id = 1 AND film_id = 1;

索引列的顺序

让选择性最强的索引列放在前面。

索引的选择性是指:不重复的索引值和记录总数的比值。最大值为 1,此时每个记录都有唯一的索引与其对应。选择性越高,每个记录的区分度越高,查询效率也越高。

例如下面显示的结果中 customer_id 的选择性比 staff_id 更高,因此最好把 customer_id 列放在多列索引的前面。

1
2
3
4
SELECT COUNT(DISTINCT staff_id)/COUNT(*) AS staff_id_selectivity,
COUNT(DISTINCT customer_id)/COUNT(*) AS customer_id_selectivity,
COUNT(*)
FROM payment;
1
2
3
staff_id_selectivity: 0.0001
customer_id_selectivity: 0.0373
COUNT(*): 16049

前缀索引

对于 BLOB、TEXT 和 VARCHAR 类型的列,必须使用前缀索引,只索引开始的部分字符。

前缀长度的选取需要根据索引选择性来确定。

覆盖索引

索引包含所有需要查询的字段的值。

具有以下优点:

  • 索引通常远小于数据行的大小,只读取索引能大大减少数据访问量。
  • 一些存储引擎(例如 MyISAM)在内存中只缓存索引,而数据依赖于操作系统来缓存。因此,只访问索引可以不使用系统调用(通常比较费时)。
  • 对于 InnoDB 引擎,若辅助索引能够覆盖查询,则无需访问主索引。

索引的优点

  • 大大减少了服务器需要扫描的数据行数。

  • 帮助服务器避免进行排序和分组,以及避免创建临时表(B+Tree 索引是有序的,可以用于 ORDER BY 和 GROUP BY 操作。临时表主要是在排序和分组过程中创建,不需要排序和分组,也就不需要创建临时表)。

  • 将随机 I/O 变为顺序 I/O(B+Tree 索引是有序的,会将相邻的数据都存储在一起)。

索引的使用条件

  • 对于非常小的表、大部分情况下简单的全表扫描比建立索引更高效;

  • 对于中到大型的表,索引就非常有效;

  • 但是对于特大型的表,建立和维护索引的代价将会随之增长。这种情况下,需要用到一种技术可以直接区分出需要查询的一组数据,而不是一条记录一条记录地匹配,例如可以使用分区技术。

聚簇索引与非聚簇索引

  • 聚簇索引:将存储的数据与索引放到了一块,找到索引也就找到了数据
  • 非聚簇索引:将数据存储于索引分开结构,索引结构的叶子节点指向了数据的对应行,myisam通过key_buffer把索引先缓存到内存中,当需要访问数据时(通过索引访问数据),在内存中直接搜索索引,然后通过索引找到磁盘相应数据,这也就是为什么索引不在key buffer命中时,速度慢的原因
  • 注意:innodb中,在聚簇索引之上创建的索引称之为辅助索引,辅助索引访问数据总是需要二次查找,非聚簇索引都是辅助索引,像复合索引、前缀索引、唯一索引,辅助索引叶子节点存储的不再是行的物理位置,而是主键值。

聚簇索引具有唯一性

由于聚簇索引是将数据跟索引结构放到一块,因此一个表仅有一个聚簇索引

一个误区:把主键自动设为聚簇索引

聚簇索引默认是主键,如果表中没有定义主键,InnoDB 会选择一个唯一的非空索引代替。如果没有这样的索引,InnoDB 会隐式定义一个主键来作为聚簇索引。InnoDB 只聚集在同一个页面中的记录。包含相邻键值的页面可能相距甚远。如果你已经设置了主键为聚簇索引,必须先删除主键,然后添加我们想要的聚簇索引,最后恢复设置主键即可。

此时其他索引只能被定义为非聚簇索引。这个是最大的误区。有的主键还是无意义的自动增量字段,那样的话Clustered index对效率的帮助,完全被浪费了。

刚才说到了,聚簇索引性能最好而且具有唯一性,所以非常珍贵,必须慎重设置。一般要根据这个表最常用的SQL查询方式来进行选择,某个字段作为聚簇索引,或组合聚簇索引,这个要看实际情况。

记住最终目的就是在相同结果集情况下,尽可能减少逻辑IO

聚簇索引的优势

看上去聚簇索引的效率明显要低于非聚簇索引,因为每次使用辅助索引检索都要经过两次B+树查找,这不是多此一举吗?聚簇索引的优势在哪?

  1. 由于行数据和叶子节点存储在一起,同一页中会有多条行数据,访问同一数据页不同行记录时,已经把页加载到了Buffer中,再次访问的时候,会在内存中完成访问,不必访问磁盘。这样主键和行数据是一起被载入内存的,找到叶子节点就可以立刻将行数据返回了,如果按照主键Id来组织数据,获得数据更快。
  2. 辅助索引使用主键作为”指针”而不是使用地址值作为指针的好处是,减少了当出现行移动或者数据页分裂时辅助索引的维护工作,使用主键值当作指针会让辅助索引占用更多的空间,换来的好处是InnoDB在移动行时无须更新辅助索引中的这个”指针”。也就是说行的位置(实现中通过16K的Page来定位)会随着数据库里数据的修改而发生变化(前面的B+树节点分裂以及Page的分裂),使用聚簇索引就可以保证不管这个主键B+树的节点如何变化,辅助索引树都不受影响。
  3. 聚簇索引适合用在排序的场合,非聚簇索引不适合
  4. 取出一定范围数据的时候,使用用聚簇索引。因为索引是按照列值顺序存储的(至少在单个页内是如此),所以对于IO密集型的范围查询会比随机从磁盘读取每一行数据的IO要少的多。对于某些存储引擎,例如MyISAM和Percona XtraDB,甚至可以通过OPTIMIZE命令使得索引完全顺序排列,这让简单的范围查询能使用完全顺序的索引访问。
  5. 二级索引需要两次索引查找,而不是一次才能取到数据,因为存储引擎第一次需要通过二级索引找到索引的叶子节点,从而找到数据的主键,然后在聚簇索引中用主键再次查找索引,再找到数据
  6. 可以把相关数据保存在一起。例如实现电子邮箱时,可以根据用户 ID 来聚集数据,这样只需要从磁盘读取少数的数据页就能获取某个用户的全部邮件。如果没有使用聚簇索引,则每封邮件都可能导致一次磁盘 I/O。

查询性能优化

使用 Explain 进行分析

Explain 用来分析 SELECT 查询语句,开发人员可以通过分析 Explain 结果来优化查询语句。

比较重要的字段有:

  • select_type : 查询类型,有简单查询、联合查询、子查询等
  • key : 使用的索引
  • rows : 扫描的行数

优化数据访问

减少请求的数据量

  • 只返回必要的列:最好不要使用 SELECT * 语句。
  • 只返回必要的行:使用 LIMIT 语句来限制返回的数据。
  • 缓存重复查询的数据:使用缓存可以避免在数据库中进行查询,特别在要查询的数据经常被重复查询时,缓存带来的查询性能提升将会是非常明显的。

减少服务器端扫描的行数

最有效的方式是使用索引来覆盖查询。

重构查询方式

切分大查询

一个大查询如果一次性执行的话,可能一次锁住很多数据、占满整个事务日志、耗尽系统资源、阻塞很多小的但重要的查询。

1
DELETE FROM messages WHERE create < DATE_SUB(NOW(), INTERVAL 3 MONTH);
1
2
rows_affected = 0
do { rows_affected = do_query( "DELETE FROM messages WHERE create < DATE_SUB(NOW(), INTERVAL 3 MONTH) LIMIT 10000")} while rows_affected > 0

分解大连接查询

将一个大连接查询分解成对每一个表进行一次单表查询,然后在应用程序中进行关联,这样做的好处有:

  • 让缓存更高效。对于连接查询,如果其中一个表发生变化,那么整个查询缓存就无法使用。而分解后的多个查询,即使其中一个表发生变化,对其它表的查询缓存依然可以使用。
  • 分解成多个单表查询,这些单表查询的缓存结果更可能被其它查询使用到,从而减少冗余记录的查询。
  • 减少锁竞争;
  • 在应用层进行连接,可以更容易对数据库进行拆分,从而更容易做到高性能和可伸缩。
  • 查询本身效率也可能会有所提升。例如下面的例子中,使用 IN() 代替连接查询,可以让 MySQL 按照 ID 顺序进行查询,这可能比随机的连接要更高效。
1
2
3
4
SELECT * FROM tag
JOIN tag_post ON tag_post.tag_id=tag.id
JOIN post ON tag_post.post_id=post.id
WHERE tag.tag='mysql';
1
2
3
SELECT * FROM tag WHERE tag='mysql';
SELECT * FROM tag_post WHERE tag_id=1234;
SELECT * FROM post WHERE post.id IN (123,456,567,9098,8904);