Redis

Redis是一款内存高速缓存数据库。Redis全称为:Remote Dictionary Server(远程数据服务),使用C语言编写,Redis是一个key-value存储系统(键值存储系统),支持丰富的数据类型,如:String、list、set、zset、hash。

Redis是一种支持key-value等多种数据结构的存储系统。可用于缓存,事件发布或订阅,高速队列等场景。支持网络,提供字符串,哈希,列表,队列,集合结构直接存取,基于内存,可持久化。

为什么要使用Redis

一个产品的使用场景肯定是需要根据产品的特性,先列举一下Redis的特点:

  • 读写性能优异
    • Redis能读的速度是110000次/s,写的速度是81000次/s
  • 数据类型丰富
    • Redis支持二进制案例的 Strings, Lists, Hashes, Sets 及 Ordered Sets 数据类型操作。
  • 原子性
    • Redis的所有操作都是原子性的,同时Redis还支持对几个操作全并后的原子性执行。
  • 丰富的特性
    • Redis支持 publish/subscribe, 通知, key 过期等特性。
  • 持久化
    • Redis支持RDB, AOF等持久化方式
  • 发布订阅
    • Redis支持发布/订阅模式
  • 分布式
    • Redis Cluster

下面是官方的bench-mark根据如下条件获得的性能测试(读的速度是110000次/s,写的速度是81000次/s

  • 测试完成了50个并发执行100000个请求。
  • 设置和获取的值是一个256字节字符串。
  • Linux box是运行Linux 2.6,这是X3320 Xeon 2.5 ghz。
  • 文本执行使用loopback接口(127.0.0.1)。

Redis的使用场景

redis应用场景总结redis平时我们用到的地方蛮多的,下面就了解的应用场景做个总结:

热点数据的缓存

缓存是Redis最常见的应用场景,之所有这么使用,主要是因为Redis读写性能优异。而且逐渐有取代memcached,成为首选服务端缓存的组件。而且,Redis内部是支持事务的,在使用时候能有效保证数据的一致性。

作为缓存使用时,一般有两种方式保存数据:

  • 读取前,先去读Redis,如果没有数据,读取数据库,将数据拉入Redis。
  • 插入数据时,同时写入Redis。

方案一:实施起来简单,但是有两个需要注意的地方:

  • 避免缓存击穿。(数据库没有就需要命中的数据,导致Redis一直没有数据,而一直命中数据库。)
  • 数据的实时性相对会差一点。

方案二:数据实时性强,但是开发时不便于统一处理。

当然,两种方式根据实际情况来适用。如:方案一适用于对于数据实时性要求不是特别高的场景。方案二适用于字典表、数据量不大的数据存储。

限时业务的运用

redis中可以使用expire命令设置一个键的生存时间,到时间后redis会删除它。利用这一特性可以运用在限时的优惠活动信息、手机验证码等业务场景。

计数器相关问题

redis由于incrby命令可以实现原子性的递增,所以可以运用于高并发的秒杀活动、分布式序列号的生成、具体业务还体现在比如限制一个手机号发多少条短信、一个接口一分钟限制多少请求、一个接口一天限制调用多少次等等。

分布式锁

这个主要利用redis的setnx命令进行,setnx:”set if not exists”就是如果不存在则成功设置缓存同时返回1,否则返回0 ,这个特性在很多后台中都有所运用,因为我们服务器是集群的,定时任务可能在两台机器上都会运行,所以在定时任务中首先 通过setnx设置一个lock, 如果成功设置则执行,如果没有成功设置,则表明该定时任务已执行。 当然结合具体业务,我们可以给这个lock加一个过期时间,比如说30分钟执行一次的定时任务,那么这个过期时间设置为小于30分钟的一个时间就可以,这个与定时任务的周期以及定时任务执行消耗时间相关。

在分布式锁的场景中,主要用在比如秒杀系统等。

延时操作

比如在订单生产后我们占用了库存,10分钟后去检验用户是否真正购买,如果没有购买将该单据设置无效,同时还原库存。 由于redis自2.8.0之后版本提供Keyspace Notifications功能,允许客户订阅Pub/Sub频道,以便以某种方式接收影响Redis数据集的事件。 所以我们对于上面的需求就可以用以下解决方案,我们在订单生产时,设置一个key,同时设置10分钟后过期, 我们在后台实现一个监听器,监听key的实效,监听到key失效时将后续逻辑加上。

当然我们也可以利用rabbitmq、activemq等消息中间件的延迟队列服务实现该需求。

排行榜相关问题

关系型数据库在排行榜方面查询速度普遍偏慢,所以可以借助redis的SortedSet进行热点数据的排序。

比如点赞排行榜,做一个SortedSet, 然后以用户的openid作为上面的username, 以用户的点赞数作为上面的score, 然后针对每个用户做一个hash, 通过zrangebyscore就可以按照点赞数获取排行榜,然后再根据username获取用户的hash信息,这个当时在实际运用中性能体验也蛮不错的。

点赞、好友等相互关系的存储

Redis 利用集合的一些命令,比如求交集、并集、差集等。

在微博应用中,每个用户关注的人存在一个集合中,就很容易实现求两个人的共同好友功能。

简单队列

由于Redis有list push和list pop这样的命令,所以能够很方便的执行队列操作。

Redis数据结构

首先对redis来说,所有的key(键)都是字符串。我们在谈Redis基础数据结构时,讨论的是存储值的数据类型,主要包括常见的5种数据类型,分别是:String、List、Set、Zset、Hash。

结构类型 结构存储的值 结构的读写能力
String字符串 可以是字符串、整数或浮点数 对整个字符串或字符串的一部分进行操作;对整数或浮点数进行自增或自减操作;
List列表 一个链表,链表上的每个节点都包含一个字符串 对链表的两端进行push和pop操作,读取单个或多个元素;根据值查找或删除元素;
Set集合 包含字符串的无序集合 字符串的集合,包含基础的方法有看是否存在添加、获取、删除;还包含计算交集、并集、差集等
Hash散列 包含键值对的无序散列表 包含方法有添加、获取、删除单个元素
Zset有序集合 和散列一样,用于存储键值对 字符串成员与浮点数分数之间的有序映射;元素的排列顺序由分数的大小决定;包含方法有添加、获取、删除单个元素以及根据分值范围或成员来获取元素

String字符串

String是redis中最基本的数据类型,一个key对应一个value。

String类型是二进制安全的,意思是 redis 的 string 可以包含任何数据。如数字,字符串,JPEG 图片格式的字符串或者Json序列化的对象。

  • 命令使用
命令 简述 使用
GET 获取存储在给定键中的值 GET name
SET 设置存储在给定键中的值 SET name value
DEL 删除存储在给定键中的值 DEL name
INCR 将键存储的值加1 INCR key
DECR 将键存储的值减1 DECR key
INCRBY 将键存储的值加上整数 INCRBY key amount
DECRBY 将键存储的值减去整数 DECRBY key amount
  • 命令执行

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    127.0.0.1:6379> set hello world
    OK
    127.0.0.1:6379> get hello
    "world"
    127.0.0.1:6379> del hello
    (integer) 1
    127.0.0.1:6379> get hello
    (nil)
    127.0.0.1:6379> set counter 2
    OK
    127.0.0.1:6379> get counter
    "2"
    127.0.0.1:6379> incr counter
    (integer) 3
    127.0.0.1:6379> get counter
    "3"
    127.0.0.1:6379> incrby counter 100
    (integer) 103
    127.0.0.1:6379> get counter
    "103"
    127.0.0.1:6379> decr counter
    (integer) 102
    127.0.0.1:6379> get counter
    "102"

使用场景

  • 缓存: 经典使用场景,把常用信息,字符串,图片或者视频等信息放到redis中,作为缓存层,数据库做持久化,降低数据库的读写压力。
  • 计数器:redis是单线程模型,一个命令执行完才会执行下一个,同时数据可以一步落地到其他的数据源。可以用来记录网站访问量,某个文件的下载量,签到人数,视频访问量等等。
  • 时间内限制请求次数:比如已登录用户请求短信验证码,验证码在5分钟内有效的场景。当用户首次请求了短信接口,将用户id存储到redis 已经发送短信的字符串中,并且设置过期时间为5分钟。当该用户再次请求短信接口,发现已经存在该用户发送短信记录,则不再发送短信。
  • session:常见方案spring session + redis实现session共享。当用nginx做负载均衡的时候,如果我们每个从服务器上都各自存储自己的session,那么当切换了服务器后,session信息会由于不共享而会丢失,不得不考虑第三应用来存储session。

List列表

Redis中的List其实就是链表(Redis用双端链表实现List)。

使用List结构,可以轻松地实现最新消息排队功能(比如新浪微博的TimeLine)。List的另一个应用就是消息队列,可以利用List的 PUSH 操作,将任务存放在List中,然后工作线程再用 POP 操作将任务取出进行执行。

  • 命令使用
命令 简述 使用
RPUSH 将给定值推入到列表右端 RPUSH key value
LPUSH 将给定值推入到列表左端 LPUSH key value
RPOP 从列表的右端弹出一个值,并返回被弹出的值 RPOP key
LPOP 从列表的左端弹出一个值,并返回被弹出的值 LPOP key
LRANGE 获取列表在给定范围上的所有值 LRANGE key 0 -1
LINDEX 通过索引获取列表中的元素。你也可以使用负数下标,以 -1 表示列表的最后一个元素, -2 表示列表的倒数第二个元素,以此类推。 LINDEX key index
  • 使用列表的技巧

    • lpush+lpop=Stack(栈)
    • lpush+rpop=Queue(队列)
    • lpush+ltrim=Capped Collection(有限集合)
    • lpush+brpop=Message Queue(消息队列)
  • 命令执行

1
2
3
4
5
6
7
8
9
10
11
12
127.0.0.1:6379> lpush mylist 1 2 ll ls mem
(integer) 5
127.0.0.1:6379> lrange mylist 0 -1
1) "mem"
2) "ls"
3) "ll"
4) "2"
5) "1"
127.0.0.1:6379> lindex mylist -1
"1"
127.0.0.1:6379> lindex mylist 10 # index不在 mylist 的区间范围内
(nil)
  • 使用场景
    • 微博TimeLine: 有人发布微博,用lpush加入时间轴,展示新的列表信息。朋友圈的点赞列表、评论列表、排行榜。
    • 消息队列 :lpush+rpop,但是这样用redis作为消息队列是不安全的,它不能重复消费,一旦消费就会被删除,同时做消费者确认ACK也麻烦所以一般在实际开发中一般很少用redis中消息队列,因为现在已经有Kafka、NSQ、RabbitMQ等成熟的消息队列了,它们的功能更加完善。

Set集合

Redis 的 Set 是 String 类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。内部实现相当于一个特殊的字典,字典中所有的value都是一个值 NULL。当集合中最后一个元素被移除之后,数据结构被自动删除,内存被回收。

Redis 中集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是 O(1)。

  • 命令使用
命令 简述 使用
SADD 向集合添加一个或多个成员,若key不存在,创建该key SADD key value1 value2
SCARD 获取集合的成员数 SCARD key
SMEMBERS 返回集合中的所有成员 SMEMBERS key [count]
SISMEMBER 判断 member 元素是否是集合 key 的成员 SISMEMBER key [count]
SPOP 移除并返回集合中的一个或多个随机元素 SPOP key [count]
SREM 移除集合中一个或多个成员 SREM key value1 value2
SRANDMEMBER 返回集合中一个或多个随机数 SRANDMEMBER key [count]
SMOVE 将 member 元素从 source 集合移动到 destination 集合 SMOVE source destination member

其它一些集合操作,请参考这里https://www.runoob.com/redis/redis-sets.html

  • 命令执行
1
2
3
4
5
6
7
8
127.0.0.1:6379> sadd myset hao hao1 xiaohao hao
(integer) 3
127.0.0.1:6379> smembers myset
1) "xiaohao"
2) "hao1"
3) "hao"
127.0.0.1:6379> sismember myset hao
(integer) 1
  • 使用场景
    • 标签(tag),给用户添加标签,或者用户给消息添加标签,这样有同一标签或者类似标签的可以给推荐关注的事或者关注的人。
    • 点赞,或点踩,收藏等,可以放到set中实现。保证一个用户只能点一个赞。key 可以是某某文章、微信朋友圈的文章id
    • 抽奖活动:存储某活动中中奖的用户ID ,因为有去重功能,可以保证同一个用户不会中奖两次。

Hash散列

Redis hash 是一个 string 类型的 field(字段) 和 value(值) 的映射表,hash 特别适合用于存储对象。

  • 命令使用
命令 简述 使用
HSET 添加键值对 HSET hash-key sub-key1 value1
HGET 获取指定散列键的值 HGET hash-key key1
HGETALL 获取散列中包含的所有键值对 HGETALL hash-key
HDEL 如果给定键存在于散列中,那么就移除这个键 HDEL hash-key sub-key1
  • 命令执行
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
127.0.0.1:6379> hset user name1 hao
(integer) 1
127.0.0.1:6379> hset user email1 hao@163.com
(integer) 1
127.0.0.1:6379> hgetall user
1) "name1"
2) "hao"
3) "email1"
4) "hao@163.com"
127.0.0.1:6379> hget user user
(nil)
127.0.0.1:6379> hget user name1
"hao"
127.0.0.1:6379> hset user name2 xiaohao
(integer) 1
127.0.0.1:6379> hset user email2 xiaohao@163.com
(integer) 1
127.0.0.1:6379> hgetall user
1) "name1"
2) "hao"
3) "email1"
4) "hao@163.com"
5) "name2"
6) "xiaohao"
7) "email2"
8) "xiaohao@163.com"
  • 使用场景

    • 缓存: 能直观,更节省空间(相比string)的维护缓存信息,如用户信息,视频信息等。

    • 存储对象: 哈希对象常常用来缓存一些对象信息,如用户信息、商品信息、配置信息等。

      我们以用户信息为例,它在关系型数据库中的结构是这样的:

      id name age
      1 Tom 15
      2 Jerry 13

      使用Redis Hash存储其结构如下图:

      1
      2
      hmset user:1 name Tom age 15
      hmset user:2 name Jerry age 13

      相比较于使用Redis字符串存储,其有以下几个优缺点:

      1. 原生字符串每个属性一个键。占用过多的键,内存占用量较大,同时用户信息内聚性比较差。
      2. 序列化字符串后,将用户信息序列化后用一个键保存,简化编程,序列化和反序列化有一定的开销,同时每次更新属性都需要把全部数据取出进行反序列化,更新后再序列化到Redis中。
    • Redisson分布式锁: Redisson在实现分布式锁的时候,内部的用的数据就是hash而不是String。因为Redisson为了实现可重入加锁机制。所以在hash中存入了当前线程ID。

    • 购物车列表:以用户id为key商品id为field商品数量为value,恰好构成了购物车的3个要素。优点:无须对数据库进行写入就可以实现购物车功能,这种方式大大提高了购物车的性能。缺点:程序需要重新解析和验证( validate) cookie,确保 cookie 的格式正确,并且包含的商品都是真正可购买的商品。另外,因为浏览器每次发送请求都会连 cookie 一起发送,所以如果购物车 cookie 的体积比较大,那么请求发送和处理的速度可能会有所降低。

  • 底层实现

    底层存储结构有两种实现方式:

    • ziplist
    • 哈希表

    第一种,当存储的数据量较少的时,hash 采用 ziplist 作为底层存储结构,此时要求符合以下两个条件:

    1. 哈希对象保存的所有键值对(键和值)的字符串长度总和小于 64 个字节。
    2. 哈希对象保存的键值对数量要小于 512 个。

    当无法满足上述条件时,hash 就会采用第二种方式来存储数据,也就是哈希表。因此其查找性能非常高效,其时间复杂度为 O(1)。

    哈希表又称散列表,其初衷是将数据映射到数组中的某个位置上,这样就能够通过数组下标来访问该数据,从而提高数据的查找效率。

ziplist压缩列表

官方文档中关于 ziplist 的介绍如下:

1
2
3
4
5
6
7
8
/* The ziplist is a specially encoded dually linked list that is designed
* to be very memory efficient. It stores both strings and integer values,
* where integers are encoded as actual integers instead of a series of
* characters. It allows push and pop operations on either side of the list
* in O(1) time. However, because every operation requires a reallocation of
* the memory used by the ziplist, the actual complexity is related to the
* amount of memory used by the ziplist.
*/

ziplist 是一个经过特殊编码的双向链表,它的设计目标是节约内存。它可以存储字符串或者整数。其中整数是按二进制进行编码的,而不是字符串序列。它能以 O(1) 的时间复杂度在列表的两端进行 push 和 pop 操作。但是由于每个操作都需要对 ziplist 所使用的内存进行重新分配,所以实际操作的复杂度与 ziplist 占用内存大小有关。

ziplist 的设计目标是为了 节约内存,而链表的各项之间需要使用指针连接起来,这种方式会带来大量的内存碎片,而且地址指针也会占用额外的内存,这与 ziplist 的设计初衷不符。而且看了 ziplist 的数据结构就会发现,ziplist 实际上是一块连续的内存。

因此可以这么理解:ziplist 是一个特殊的双向链表,特殊之处在于:没有维护双向指针,prev、next,而是存储了上一个 entry 的长度和当前 entry 的长度,通过长度推算下一个元素。

总结

  • 压缩列表本质上就是一个字节数组
  • 是 Redis 为了节约内存而设计的一种线性结构
  • 可以包含多个元素,每个元素可以是一个字节数组或一个整数

压缩列表的各个组成部分:

图中各字段含义如下:

属性 类型 长度 用途
zlbytes uint32_t 4 字节 记录整个压缩列表占用的内存字节数:在对压缩列表进行内存重分配,或者计算 zlend 的位置时使用。
zltail uint32_t 4 字节 记录压缩列表表尾节点距离压缩列表的起始地址有多少字节:通过这个偏移量,程序无需遍历整个压缩列表就可以确定表尾节点的地址。
zllen uint16_t 2 字节 记录了压缩列表包含的节点数量,当这个属性的值小于 UINT16_MAX(65535)时,这个属性的值就是压缩列表包含节点的数量;当这个值等于 UINT16_MAX 时,节点的真实数量需要遍历整个压缩列表才能计算得出。
entry 列表节点 不定 压缩列表包含的各个节点,节点的长度由节点保存的内容决定。
zlend uint8_t 1 字节 特殊值 0xFF(十进制 255),用于标记压缩列表的末端。

来看一个包含三个节点的压缩列表示例:

  • 列表 zlbytes 属性的值为 0x50(十进制 80),表示压缩列表的总长为 80 字节。
  • 列表 zltail 属性的值为 0x3c(十进制 60),这表示如果我们有一个指向压缩列表起始地址的指针 p,那么只要用指针 p 加上偏移量 60,就可以计算出表尾节点 entry3 的地址。
  • 列表 zllen 属性的值为 0x3(十进制 3),表示压缩列表包含三个节点。

假如 char * zl 指向压缩列表的首地址,Redis 可通过以下宏定义实现压缩列表的各个字段的存取操作。

1
2
3
4
5
6
#define ZIPLIST_BYTES(zl)       (*((uint32_t*)(zl))) // zl 指向 zlbytes 字段
#define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t)))) // zl+4 指向 zltail 字段
#define ZIPLIST_ENTRY_TAIL(zl) ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) // zl+zltail 指向尾元素首地址;intrev32fifbe 使得数据存储统一采用小端法
#define ZIPLIST_LENGTH(zl) (*((uint16_t*)((zl)+sizeof(uint32_t)*2))) // zl+8 指向 zllen 字段
#define ZIPLIST_ENTRY_END(zl) ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1) // 压缩列表的最后一个字段即为 zllend 字段
复制代码

了解了压缩列表的数据结构,可以很容易的获得压缩列表的字节长度、元素个数等,那么如何遍历压缩列表呢?对于任意一个元素,如何判断其存储的是什么类型呢?如何获取字节数组的长度呢?

回答这些问题之前,需要了解压缩列表元素的数据结构:

  • previous_entry_length 字段表示前一个元素的字节长度,占 1 个或者 5 个字节:
    • 当前一个元素的长度小于 254 字节时,用 1 个字节表示;
    • 当前一个元素的长度大于或等于 254 字节时,用 5 个字节来表示。而此时 previous_entry_length 字段的第一个字节是固定的 0xFE(十进制为 254),后面 4 个字节才真正表示前一个元素的长度。
    • 假设已知当前元素的首地址为 p,那么 p-previous_entry_length 就是前一个元素的首地址,从而实现压缩列表从尾到头的遍历。
  • encoding 字段表示当前元素的编码,记录了节点的 content 字段所保存数据的类型以及长度:
    • 1 字节、2 字节或者 5 字节长,值的最高位为 00、01 或者 10 的是字节数组编码:这种编码表示节点的 content 属性保存着字节数组,数组的长度由编码除去最高两位之后的其他位记录;
    • 1 字节长,值的最高位以 11 开头的是整数编码:这种编码表示节点的 content 字段保存着整数值,整数值的类型和长度由编码除去最高两位之后的其他位记录;
  • content 字段存储节点的值,节点值可以是一个字节数组或者整数,值的类型和长度由节点的 encoding 属性决定。

下表记录了压缩列表的元素编码,表格中的下划线“_”表示留空,而 b、x 等变量则代表实际的二进制数据,为了方便阅读,多个字节之间用空格隔开。

Zset有序集合

Redis 有序集合和集合一样也是 string 类型元素的集合,且不允许重复的成员。不同的是每个元素都会关联一个 double 类型的分数。redis 正是通过分数来为集合中的成员进行从小到大的排序。

有序集合的成员是唯一的, 但分数(score)却可以重复。有序集合是通过两种数据结构实现:

  • 如果有序集合的元素个数小于 128 个,并且每个元素的值小于 64 字节时,Redis 会使用压缩列表作为 Zset 类型的底层数据结构;
  • 如果有序集合的元素不满足上面的条件,Redis 会使用跳表作为 Zset 类型的底层数据结构;
  • 在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了
  1. 压缩列表(ziplist): ziplist是为了提高存储效率而设计的一种特殊编码的双向链表。它可以存储字符串或者整数,存储整数时是采用整数的二进制而不是字符串形式存储。它能在O(1)的时间复杂度下完成list两端的push和pop操作。但是因为每次操作都需要重新分配ziplist的内存,所以实际复杂度和ziplist的内存使用量相关

  2. 跳跃表(zSkiplist): 跳跃表的性能可以保证在查找,删除,添加等操作的时候在对数期望时间内完成,这个性能是可以和平衡树来相比较的,而且在实现方面比平衡树要优雅,这是采用跳跃表的主要原因。跳跃表的复杂度是O(log(n))。

  • 命令使用
命令 简述 使用
ZADD 将一个带有给定分值的成员添加到有序集合里面 ZADD zset-key 178 member1
ZRANGE 根据元素在有序集合中所处的位置,从有序集合中获取多个元素 ZRANGE zset-key 0-1 withccores
ZREM 如果给定元素成员存在于有序集合中,那么就移除这个元素 ZREM zset-key member1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# 往有序集合key中加入带分值元素
ZADD key score member [[score member]...]
# 往有序集合key中删除元素
ZREM key member [member...]
# 返回有序集合key中元素member的分值
ZSCORE key member
# 返回有序集合key中元素个数
ZCARD key

# 为有序集合key中元素member的分值加上increment
ZINCRBY key increment member

# 正序获取有序集合key从start下标到stop下标的元素
ZRANGE key start stop [WITHSCORES]
# 倒序获取有序集合key从start下标到stop下标的元素
ZREVRANGE key start stop [WITHSCORES]

# 返回有序集合中指定分数区间内的成员,分数由低到高排序。
ZRANGEBYSCORE key min max [WITHSCORES] [LIMIT offset count]

# 返回指定成员区间内的成员,按字典正序排列, 分数必须相同。
ZRANGEBYLEX key min max [LIMIT offset count]
# 返回指定成员区间内的成员,按字典倒序排列, 分数必须相同
ZREVRANGEBYLEX key max min [LIMIT offset count]

# 并集计算(相同元素分值相加),numberkeys一共多少个key,WEIGHTS每个key对应的分值乘积
ZUNIONSTORE destkey numberkeys key [key...]
# 交集计算(相同元素分值相加),numberkeys一共多少个key,WEIGHTS每个key对应的分值乘积
ZINTERSTORE destkey numberkeys key [key...]

更多命令请参考这里 https://www.runoob.com/redis/redis-sorted-sets.html

  • 命令执行
1
2
3
4
5
6
7
127.0.0.1:6379> zadd myscoreset 100 hao 90 xiaohao
(integer) 2
127.0.0.1:6379> ZRANGE myscoreset 0 -1
1) "xiaohao"
2) "hao"
127.0.0.1:6379> ZSCORE myscoreset hao
"100"
  • 使用场景
    • 排行榜:有序集合经典使用场景。例如小说视频等网站需要对用户上传的小说视频做排行榜,榜单可以按照用户关注数,更新时间,字数等打分,做排行。
    • 电话、姓名排序: 使用有序集合的 ZRANGEBYLEX 或 ZREVRANGEBYLEX 可以帮助我们实现电话号码或姓名的排序,我们以 ZRANGEBYLEX (返回指定成员区间内的成员,按 key 正序排列,分数必须相同)为例。

特殊数据类型详解

HyperLogLogs(基数统计)

Redis 2.8.9 版本更新了 Hyperloglog 数据结构!是一种用于「统计基数」的数据集合类型,基数统计就是指统计一个集合中不重复的元素个数。但要注意,HyperLogLog 是统计规则是基于概率完成的,不是非常准确,标准误算率是 0.81%。

所以,简单来说 HyperLogLog 提供不精确的去重计数

HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的内存空间总是固定的、并且是很小的。

在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。

  • 什么是基数?

举个例子,A = {1, 2, 3, 4, 5}, B = {3, 5, 6, 7, 9};那么基数(不重复的元素)= 1, 2, 4, 6, 7, 9; (允许容错,即可以接受一定误差)

  • HyperLogLogs 基数统计用来解决什么问题?

这个结构可以非常省内存的去统计各种计数,比如注册 IP 数、每日访问 IP 数、页面实时UV、在线用户数,共同好友数等。

  • 它的优势体现在哪?

一个大型的网站,每天 IP 比如有 100 万,粗算一个 IP 消耗 15 字节,那么 100 万个 IP 就是 15M。而 HyperLogLog 在 Redis 中每个键占用的内容都是 12K,理论存储近似接近 2^64 个值,不管存储的内容是什么,它一个基于基数估算的算法,只能比较准确的估算出基数,可以使用少量固定的内存去存储并识别集合中的唯一元素。而且这个估算的基数并不一定准确,是一个带有 0.81% 标准错误的近似值(对于可以接受一定容错的业务场景,比如IP数统计,UV等,是可以忽略不计的)。

  • 相关命令使用
1
2
3
4
5
6
7
8
9
10
11
12
127.0.0.1:6379> pfadd key1 a b c d e f g h i    # 创建第一组元素
(integer) 1
127.0.0.1:6379> pfcount key1 # 统计元素的基数数量
(integer) 9
127.0.0.1:6379> pfadd key2 c j k l m e g a # 创建第二组元素
(integer) 1
127.0.0.1:6379> pfcount key2
(integer) 8
127.0.0.1:6379> pfmerge key3 key1 key2 # 合并两组:key1 key2 -> key3 并集
OK
127.0.0.1:6379> pfcount key3
(integer) 13

应用场景

百万级网页 UV 计数

Redis HyperLogLog 优势在于只需要花费 12 KB 内存,就可以计算接近 2^64 个元素的基数,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。

所以,非常适合统计百万级以上的网页 UV 的场景。

在统计 UV 时,你可以用 PFADD 命令(用于向 HyperLogLog 中添加新元素)把访问页面的每个用户都添加到 HyperLogLog 中。

1
PFADD page1:uv user1 user2 user3 user4 user5

接下来,就可以用 PFCOUNT 命令直接获得 page1 的 UV 值了,这个命令的作用就是返回 HyperLogLog 的统计结果。

1
PFCOUNT page1:uv

不过,有一点需要注意,HyperLogLog 的统计规则是基于概率完成的,所以它给出的统计结果是有一定误差的,标准误算率是 0.81%。

这也就意味着,你使用 HyperLogLog 统计的 UV 是 100 万,但实际的 UV 可能是 101 万。虽然误差率不算大,但是,如果你需要精确统计结果的话,最好还是继续用 Set 或 Hash 类型。

Bitmap (位存储)

Bitmap,即位图,是一串连续的二进制数组(0和1),可以通过偏移量(offset)定位元素。BitMap通过最小的单位bit来进行0|1的设置,表示某个元素的值或者状态,时间复杂度为O(1)。

由于 bit 是计算机中最小的单位,使用它进行储存将非常节省空间,特别适合一些数据量大且使用二值统计的场景

内部实现

Bitmap 本身是用 String 类型作为底层数据结构实现的一种统计二值状态的数据类型。

String 类型是会保存为二进制的字节数组,所以,Redis 就把字节数组的每个 bit 位利用起来,用来表示一个元素的二值状态,你可以把 Bitmap 看作是一个 bit 数组。

  • 用来解决什么问题?

比如:统计用户信息,活跃,不活跃! 登录,未登录! 打卡,不打卡! 两个状态的,都可以使用 Bitmaps

如果存储一年的打卡状态需要多少内存呢? 365 天 = 365 bit 1字节 = 8bit 46 个字节左右!

  • 相关命令使用

bitmap 基本操作:

1
2
3
4
5
6
7
8
9
# 设置值,其中value只能是 0 和 1
SETBIT key offset value

# 获取值
GETBIT key offset

# 获取指定范围内值为 1 的个数
# start 和 end 以字节为单位
BITCOUNT key start end

bitmap 运算操作:

1
2
3
4
5
6
7
8
9
10
11
12
13
# BitMap间的运算
# operations 位移操作符,枚举值
AND 与运算 &
OR 或运算 |
XOR 异或 ^
NOT 取反 ~
# result 计算的结果,会存储在该key中
# key1 … keyn 参与运算的key,可以有多个,空格分割,not运算只能一个key
# 当 BITOP 处理不同长度的字符串时,较短的那个字符串所缺少的部分会被看作 0。返回值是保存到 destkey 的字符串的长度(以字节byte为单位),和输入 key 中最长的字符串长度相等。
BITOP [operations] [result] [key1] [keyn…]

# 返回指定key中第一次出现指定value(0/1)的位置
BITPOS [key] [value]

使用bitmap 来记录 周一到周日的打卡! 周一:1 周二:0 周三:0 周四:1 ……

1
2
3
4
5
6
7
8
9
10
11
12
13
14
127.0.0.1:6379> setbit sign 0 1
(integer) 0
127.0.0.1:6379> setbit sign 1 1
(integer) 0
127.0.0.1:6379> setbit sign 2 0
(integer) 0
127.0.0.1:6379> setbit sign 3 1
(integer) 0
127.0.0.1:6379> setbit sign 4 0
(integer) 0
127.0.0.1:6379> setbit sign 5 0
(integer) 0
127.0.0.1:6379> setbit sign 6 1
(integer) 0

查看某一天是否有打卡!

1
2
3
4
127.0.0.1:6379> getbit sign 3
(integer) 1
127.0.0.1:6379> getbit sign 5
(integer) 0

统计操作,统计 打卡的天数!

1
2
127.0.0.1:6379> bitcount sign # 统计这周的打卡记录,就可以看到是否有全勤!
(integer) 3

应用场景

Bitmap 类型非常适合二值状态统计的场景,这里的二值状态就是指集合元素的取值就只有 0 和 1 两种,在记录海量数据时,Bitmap 能够有效地节省内存空间。

签到统计

在签到打卡的场景中,我们只用记录签到(1)或未签到(0),所以它就是非常典型的二值状态。

签到统计时,每个用户一天的签到用 1 个 bit 位就能表示,一个月(假设是 31 天)的签到情况用 31 个 bit 位就可以,而一年的签到也只需要用 365 个 bit 位,根本不用太复杂的集合类型。

假设我们要统计 ID 100 的用户在 2022 年 6 月份的签到情况,就可以按照下面的步骤进行操作。

第一步,执行下面的命令,记录该用户 6 月 3 号已签到。

判断用户登陆态

Bitmap 提供了 GETBIT、SETBIT 操作,通过一个偏移值 offset 对 bit 数组的 offset 位置的 bit 位进行读写操作,需要注意的是 offset 从 0 开始。

只需要一个 key = login_status 表示存储用户登陆状态集合数据, 将用户 ID 作为 offset,在线就设置为 1,下线设置 0。通过 GETBIT判断对应的用户是否在线。 5000 万用户只需要 6 MB 的空间。

假如我们要判断 ID = 10086 的用户的登陆情况:

第一步,执行以下指令,表示用户已登录。

1
SETBIT login_status 10086 1

第二步,检查该用户是否登陆,返回值 1 表示已登录。

1
GETBIT login_status 10086

第三步,登出,将 offset 对应的 value 设置成 0。

1
SETBIT login_status 10086 0
连续签到用户数

如何统计出这连续 7 天连续打卡用户总数呢?

我们把每天的日期作为 Bitmap 的 key,userId 作为 offset,若是打卡则将 offset 位置的 bit 设置成 1。

key 对应的集合的每个 bit 位的数据则是一个用户在该日期的打卡记录。

一共有 7 个这样的 Bitmap,如果我们能对这 7 个 Bitmap 的对应的 bit 位做 『与』运算。同样的 UserID offset 都是一样的,当一个 userID 在 7 个 Bitmap 对应对应的 offset 位置的 bit = 1 就说明该用户 7 天连续打卡。

结果保存到一个新 Bitmap 中,我们再通过 BITCOUNT 统计 bit = 1 的个数便得到了连续打卡 7 天的用户总数了。

Redis 提供了 BITOP operation destkey key [key ...]这个指令用于对一个或者多个 key 的 Bitmap 进行位元操作。

  • operation 可以是 andORNOTXOR。当 BITOP 处理不同长度的字符串时,较短的那个字符串所缺少的部分会被看作 0 。空的 key 也被看作是包含 0 的字符串序列。

假设要统计 3 天连续打卡的用户数,则是将三个 bitmap 进行 AND 操作,并将结果保存到 destmap 中,接着对 destmap 执行 BITCOUNT 统计,如下命令:

1
2
3
4
# 与操作
BITOP AND destmap bitmap:01 bitmap:02 bitmap:03
# 统计 bit 位 = 1 的个数
BITCOUNT destmap

即使一天产生一个亿的数据,Bitmap 占用的内存也不大,大约占 12 MB 的内存(10^8/8/1024/1024),7 天的 Bitmap 的内存开销约为 84 MB。同时我们最好给 Bitmap 设置过期时间,让 Redis 删除过期的打卡数据,节省内存。

geospatial (地理位置)

Redis 的 Geo 在 Redis 3.2 版本就推出了! 这个功能可以推算地理位置的信息: 两地之间的距离, 方圆几里的人

geoadd

添加地理位置

1
2
3
4
127.0.0.1:6379> geoadd china:city 118.76 32.04 manjing 112.55 37.86 taiyuan 123.43 41.80 shenyang
(integer) 3
127.0.0.1:6379> geoadd china:city 144.05 22.52 shengzhen 120.16 30.24 hangzhou 108.96 34.26 xian
(integer) 3

规则

两级无法直接添加,一般会下载城市数据

  • 有效的经度从-180度到180度。
  • 有效的纬度从-85.05112878度到85.05112878度。
1
2
3
# 当坐标位置超出上述指定范围时,该命令将会返回一个错误。
127.0.0.1:6379> geoadd china:city 39.90 116.40 beijin
(error) ERR invalid longitude,latitude pair 39.900000,116.400000

geopos

获取指定的成员的经度和纬度

1
2
3
4
5
127.0.0.1:6379> geopos china:city taiyuan manjing
1) 1) "112.54999905824661255"
1) "37.86000073876942196"
2) 1) "118.75999957323074341"
1) "32.03999960287850968"

获得当前定位, 一定是一个坐标值!

geodist

如果不存在, 返回空

单位如下

  • m
  • km
  • mi 英里
  • ft 英尺
1
2
3
4
127.0.0.1:6379> geodist china:city taiyuan shenyang m
"1026439.1070"
127.0.0.1:6379> geodist china:city taiyuan shenyang km
"1026.4391"

georadius

附近的人 ==> 获得所有附近的人的地址, 定位, 通过半径来查询

获得指定数量的人

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
127.0.0.1:6379> georadius china:city 110 30 1000 km            以 100,30 这个坐标为中心, 寻找半径为1000km的城市
1) "xian"
2) "hangzhou"
3) "manjing"
4) "taiyuan"
127.0.0.1:6379> georadius china:city 110 30 500 km
1) "xian"
127.0.0.1:6379> georadius china:city 110 30 500 km withdist
1) 1) "xian"
2) "483.8340"
127.0.0.1:6379> georadius china:city 110 30 1000 km withcoord withdist count 2
1) 1) "xian"
2) "483.8340"
3) 1) "108.96000176668167114"
2) "34.25999964418929977"
2) 1) "manjing"
2) "864.9816"
3) 1) "118.75999957323074341"
2) "32.03999960287850968"

参数 key 经度 纬度 半径 单位 [显示结果的经度和纬度] [显示结果的距离] [显示的结果的数量]

georadiusbymember

显示与指定成员一定半径范围内的其他成员

1
2
3
4
5
6
7
8
9
10
11
12
13
127.0.0.1:6379> georadiusbymember china:city taiyuan 1000 km
1) "manjing"
2) "taiyuan"
3) "xian"
127.0.0.1:6379> georadiusbymember china:city taiyuan 1000 km withcoord withdist count 2
1) 1) "taiyuan"
2) "0.0000"
3) 1) "112.54999905824661255"
2) "37.86000073876942196"
2) 1) "xian"
2) "514.2264"
3) 1) "108.96000176668167114"
2) "34.25999964418929977"

参数与 georadius 一样

geohash

该命令返回11个字符的hash字符串

1
2
3
127.0.0.1:6379> geohash china:city taiyuan shenyang
1) "ww8p3hhqmp0"
2) "wxrvb9qyxk0"

将二维的经纬度转换为一维的字符串, 如果两个字符串越接近, 则距离越近

底层

geo底层的实现原理实际上就是Zset, 我们可以通过Zset命令来操作geo

1
2
127.0.0.1:6379> type china:city
zset

查看全部元素 删除指定的元素

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
127.0.0.1:6379> zrange china:city 0 -1 withscores
1) "xian"
2) "4040115445396757"
3) "hangzhou"
4) "4054133997236782"
5) "manjing"
6) "4066006694128997"
7) "taiyuan"
8) "4068216047500484"
9) "shenyang"
1) "4072519231994779"
2) "shengzhen"
3) "4154606886655324"
127.0.0.1:6379> zrem china:city manjing
(integer) 1
127.0.0.1:6379> zrange china:city 0 -1
1) "xian"
2) "hangzhou"
3) "taiyuan"
4) "shenyang"
5) "shengzhen"

Stream

Redis5.0 中还增加了一个数据类型Stream,它借鉴了Kafka的设计,是一个新的强大的支持多播的可持久化的消息队列。

为什么会设计Stream

在 Redis 5.0 Stream 没出来之前,消息队列的实现方式都有着各自的缺陷,例如:

  • 发布订阅模式,不能持久化也就无法可靠的保存消息,并且对于离线重连的客户端不能读取历史消息的缺陷;
  • List 实现消息队列的方式不能重复消费,一个消息消费完就会被删除,而且生产者需要自行实现全局唯一 ID。不支持多播,分组消费等

这就是stream设计的原因,完美地实现消息队列,它支持消息的持久化、支持自动生成全局唯一 ID、支持 ack 确认消息的模式、支持消费组模式等,让消息队列更加的稳定和可靠。

如果期望设计一种数据结构来实现消息队列,最重要的就是要理解设计一个消息队列需要考虑什么?初步的我们很容易想到

  • 消息的生产
  • 消息的消费
    • 单播和多播(多对多)
    • 阻塞和非阻塞读取
  • 消息有序性
  • 消息的持久化

Redis考虑了哪些设计

  • 消息ID的序列化生成
  • 消息遍历
  • 消息的阻塞和非阻塞读取
  • 消息的分组消费
  • 未完成消息的处理
  • 消息队列监控

这也是我们需要理解Stream的点,但是结合上面的图,我们也应该理解Redis Stream也是一种超轻量MQ并没有完全实现消息队列所有设计要点,这决定着它适用的场景。

Stream详解

经过梳理总结,我认为从以下几个大的方面去理解Stream是比较合适的,总结如下:

  • Stream的结构设计
  • 生产和消费
    • 基本的增删查改
    • 单一消费者的消费
    • 消费组的消费
  • 监控状态

Stream的结构

每个 Stream 都有唯一的名称,它就是 Redis 的 key,在我们首次使用 xadd 指令追加消息时自动创建。

上图解析:

  • Consumer Group :消费组,使用 XGROUP CREATE 命令创建,一个消费组有多个消费者(Consumer), 这些消费者之间是竞争关系。
  • last_delivered_id :游标,每个消费组会有个游标 last_delivered_id,任意一个消费者读取了消息都会使游标 last_delivered_id 往前移动。
  • pending_ids :消费者(Consumer)的状态变量,作用是维护消费者的未确认的 id。 pending_ids 记录了当前已经被客户端读取的消息,但是还没有 ack (Acknowledge character:确认字符)。如果客户端没有ack,这个变量里面的消息ID会越来越多,一旦某个消息被ack,它就开始减少。这个pending_ids变量在Redis官方被称之为PEL,也就是Pending Entries List,这是一个很核心的数据结构,它用来确保客户端至少消费了消息一次,而不会在网络传输的中途丢失了没处理。

此外我们还需要理解两点:

  • 消息ID: 消息ID的形式是timestampInMillis-sequence,例如1527846880572-5,它表示当前的消息在毫米时间戳1527846880572时产生,并且是该毫秒内产生的第5条消息。消息ID可以由服务器自动生成,也可以由客户端自己指定,但是形式必须是整数-整数,而且必须是后面加入的消息的ID要大于前面的消息ID。
  • 消息内容: 消息内容就是键值对,形如hash结构的键值对,这没什么特别之处。

增删改查

消息队列相关命令:

  • XADD - 添加消息到末尾
  • XTRIM - 对流进行修剪,限制长度
  • XDEL - 删除消息
  • XLEN - 获取流包含的元素数量,即消息长度
  • XRANGE - 获取消息列表,会自动过滤已经删除的消息
  • XREVRANGE - 反向获取消息列表,ID 从大到小
  • XREAD - 以阻塞或非阻塞方式获取消息列表
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# *号表示服务器自动生成ID,后面顺序跟着一堆key/value
127.0.0.1:6379> xadd codehole * name laoqian age 30 # 名字叫laoqian,年龄30岁
1527849609889-0 # 生成的消息ID
127.0.0.1:6379> xadd codehole * name xiaoyu age 29
1527849629172-0
127.0.0.1:6379> xadd codehole * name xiaoqian age 1
1527849637634-0
127.0.0.1:6379> xlen codehole
(integer) 3
127.0.0.1:6379> xrange codehole - + # -表示最小值, +表示最大值
127.0.0.1:6379> xrange codehole - +
1) 1) 1527849609889-0
1) 1) "name"
1) "laoqian"
2) "age"
3) "30"
2) 1) 1527849629172-0
1) 1) "name"
1) "xiaoyu"
2) "age"
3) "29"
3) 1) 1527849637634-0
1) 1) "name"
1) "xiaoqian"
2) "age"
3) "1"
127.0.0.1:6379> xrange codehole 1527849629172-0 + # 指定最小消息ID的列表
1) 1) 1527849629172-0
2) 1) "name"
2) "xiaoyu"
3) "age"
4) "29"
2) 1) 1527849637634-0
2) 1) "name"
2) "xiaoqian"
3) "age"
4) "1"
127.0.0.1:6379> xrange codehole - 1527849629172-0 # 指定最大消息ID的列表
1) 1) 1527849609889-0
2) 1) "name"
2) "laoqian"
3) "age"
4) "30"
2) 1) 1527849629172-0
2) 1) "name"
2) "xiaoyu"
3) "age"
4) "29"
127.0.0.1:6379> xdel codehole 1527849609889-0
(integer) 1
127.0.0.1:6379> xlen codehole # 长度不受影响
(integer) 3
127.0.0.1:6379> xrange codehole - + # 被删除的消息没了
1) 1) 1527849629172-0
2) 1) "name"
2) "xiaoyu"
3) "age"
4) "29"
2) 1) 1527849637634-0
2) 1) "name"
2) "xiaoqian"
3) "age"
4) "1"
127.0.0.1:6379> del codehole # 删除整个Stream
(integer) 1

独立消费

我们可以在不定义消费组的情况下进行Stream消息的独立消费,当Stream没有新消息时,甚至可以阻塞等待。Redis设计了一个单独的消费指令xread,可以将Stream当成普通的消息队列(list)来使用。使用xread时,我们可以完全忽略消费组(Consumer Group)的存在,就好比Stream就是一个普通的列表(list)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# 从Stream头部读取两条消息
127.0.0.1:6379> xread count 2 streams codehole 0-0
1) 1) "codehole"
2) 1) 1) 1527851486781-0
2) 1) "name"
2) "laoqian"
3) "age"
4) "30"
2) 1) 1527851493405-0
2) 1) "name"
2) "yurui"
3) "age"
4) "29"
# 从Stream尾部读取一条消息,毫无疑问,这里不会返回任何消息
127.0.0.1:6379> xread count 1 streams codehole $
(nil)
# 从尾部阻塞等待新消息到来,下面的指令会堵住,直到新消息到来
127.0.0.1:6379> xread block 0 count 1 streams codehole $
# 我们从新打开一个窗口,在这个窗口往Stream里塞消息
127.0.0.1:6379> xadd codehole * name youming age 60
1527852774092-0
# 再切换到前面的窗口,我们可以看到阻塞解除了,返回了新的消息内容
# 而且还显示了一个等待时间,这里我们等待了93s
127.0.0.1:6379> xread block 0 count 1 streams codehole $
1) 1) "codehole"
2) 1) 1) 1527852774092-0
2) 1) "name"
2) "youming"
3) "age"
4) "60"
(93.11s)

客户端如果想要使用xread进行顺序消费,一定要记住当前消费到哪里了,也就是返回的消息ID。下次继续调用xread时,将上次返回的最后一个消息ID作为参数传递进去,就可以继续消费后续的消息。

block 0表示永远阻塞,直到消息到来,block 1000表示阻塞1s,如果1s内没有任何消息到来,就返回nil

1
2
3
127.0.0.1:6379> xread block 1000 count 1 streams codehole $
(nil)
(1.07s)

消费组消费

  • 消费组消费图

  • 相关命令:

    • XGROUP CREATE - 创建消费者组
    • XREADGROUP GROUP - 读取消费者组中的消息
    • XACK - 将消息标记为”已处理”
    • XGROUP SETID - 为消费者组设置新的最后递送消息ID
    • XGROUP DELCONSUMER - 删除消费者
    • XGROUP DESTROY - 删除消费者组
    • XPENDING - 显示待处理消息的相关信息
    • XCLAIM - 转移消息的归属权
    • XINFO - 查看流和消费者组的相关信息;
    • XINFO GROUPS - 打印消费者组的信息;
    • XINFO STREAM - 打印流信息
  • 创建消费组

Stream通过xgroup create指令创建消费组(Consumer Group),需要传递起始消息ID参数用来初始化last_delivered_id变量。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
127.0.0.1:6379> xgroup create codehole cg1 0-0  #  表示从头开始消费
OK
# $表示从尾部开始消费,只接受新消息,当前Stream消息会全部忽略
127.0.0.1:6379> xgroup create codehole cg2 $
OK
127.0.0.1:6379> xinfo stream codehole # 获取Stream信息
1) length
2) (integer) 3 # 共3个消息
3) radix-tree-keys
4) (integer) 1
5) radix-tree-nodes
6) (integer) 2
7) groups
8) (integer) 2 # 两个消费组
9) first-entry # 第一个消息
10) 1) 1527851486781-0
2) 1) "name"
2) "laoqian"
3) "age"
4) "30"
11) last-entry # 最后一个消息
12) 1) 1527851498956-0
2) 1) "name"
2) "xiaoqian"
3) "age"
4) "1"
127.0.0.1:6379> xinfo groups codehole # 获取Stream的消费组信息
1) 1) name
2) "cg1"
3) consumers
4) (integer) 0 # 该消费组还没有消费者
5) pending
6) (integer) 0 # 该消费组没有正在处理的消息
2) 1) name
2) "cg2"
3) consumers # 该消费组还没有消费者
4) (integer) 0
5) pending
6) (integer) 0 # 该消费组没有正在处理的消息
  • 消费组消费

Stream提供了xreadgroup指令可以进行消费组的组内消费,需要提供消费组名称、消费者名称和起始消息ID。它同xread一样,也可以阻塞等待新消息。读到新消息后,对应的消息ID就会进入消费者的PEL(正在处理的消息)结构里,客户端处理完毕后使用xack指令通知服务器,本条消息已经处理完毕,该消息ID就会从PEL中移除。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# >号表示从当前消费组的last_delivered_id后面开始读
# 每当消费者读取一条消息,last_delivered_id变量就会前进
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 1 streams codehole >
1) 1) "codehole"
2) 1) 1) 1527851486781-0
2) 1) "name"
2) "laoqian"
3) "age"
4) "30"
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 1 streams codehole >
1) 1) "codehole"
2) 1) 1) 1527851493405-0
2) 1) "name"
2) "yurui"
3) "age"
4) "29"
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 2 streams codehole >
1) 1) "codehole"
2) 1) 1) 1527851498956-0
2) 1) "name"
2) "xiaoqian"
3) "age"
4) "1"
2) 1) 1527852774092-0
2) 1) "name"
2) "youming"
3) "age"
4) "60"
# 再继续读取,就没有新消息了
127.0.0.1:6379> xreadgroup GROUP cg1 c1 count 1 streams codehole >
(nil)
# 那就阻塞等待吧
127.0.0.1:6379> xreadgroup GROUP cg1 c1 block 0 count 1 streams codehole >
# 开启另一个窗口,往里塞消息
127.0.0.1:6379> xadd codehole * name lanying age 61
1527854062442-0
# 回到前一个窗口,发现阻塞解除,收到新消息了
127.0.0.1:6379> xreadgroup GROUP cg1 c1 block 0 count 1 streams codehole >
1) 1) "codehole"
2) 1) 1) 1527854062442-0
2) 1) "name"
2) "lanying"
3) "age"
4) "61"
(36.54s)
127.0.0.1:6379> xinfo groups codehole # 观察消费组信息
1) 1) name
2) "cg1"
3) consumers
4) (integer) 1 # 一个消费者
5) pending
6) (integer) 5 # 共5条正在处理的信息还有没有ack
2) 1) name
2) "cg2"
3) consumers
4) (integer) 0 # 消费组cg2没有任何变化,因为前面我们一直在操纵cg1
5) pending
6) (integer) 0
# 如果同一个消费组有多个消费者,我们可以通过xinfo consumers指令观察每个消费者的状态
127.0.0.1:6379> xinfo consumers codehole cg1 # 目前还有1个消费者
1) 1) name
2) "c1"
3) pending
4) (integer) 5 # 共5条待处理消息
5) idle
6) (integer) 418715 # 空闲了多长时间ms没有读取消息了
# 接下来我们ack一条消息
127.0.0.1:6379> xack codehole cg1 1527851486781-0
(integer) 1
127.0.0.1:6379> xinfo consumers codehole cg1
1) 1) name
2) "c1"
3) pending
4) (integer) 4 # 变成了5条
5) idle
6) (integer) 668504
# 下面ack所有消息
127.0.0.1:6379> xack codehole cg1 1527851493405-0 1527851498956-0 1527852774092-0 1527854062442-0
(integer) 4
127.0.0.1:6379> xinfo consumers codehole cg1
1) 1) name
2) "c1"
3) pending
4) (integer) 0 # pel空了
5) idle
6) (integer) 745505

信息监控

Stream提供了XINFO来实现对服务器信息的监控,可以查询:

  • 查看队列信息
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
127.0.0.1:6379> Xinfo stream mq
1) "length"
2) (integer) 7
3) "radix-tree-keys"
4) (integer) 1
5) "radix-tree-nodes"
6) (integer) 2
7) "groups"
8) (integer) 1
9) "last-generated-id"
10) "1553585533795-9"
11) "first-entry"
12) 1) "1553585533795-3"
2) 1) "msg"
2) "4"
13) "last-entry"
14) 1) "1553585533795-9"
2) 1) "msg"
2) "10"
  • 消费组信息
1
2
3
4
5
6
7
8
9
127.0.0.1:6379> Xinfo groups mq
1) 1) "name"
2) "mqGroup"
3) "consumers"
4) (integer) 3
5) "pending"
6) (integer) 3
7) "last-delivered-id"
8) "1553585533795-4"
  • 消费者组成员信息
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
127.0.0.1:6379> XINFO CONSUMERS mq mqGroup
1) 1) "name"
2) "consumerA"
3) "pending"
4) (integer) 1
5) "idle"
6) (integer) 18949894
2) 1) "name"
2) "consumerB"
3) "pending"
4) (integer) 1
5) "idle"
6) (integer) 3092719
3) 1) "name"
2) "consumerC"
3) "pending"
4) (integer) 1
5) "idle"
6) (integer) 23683256

至此,消息队列的操作说明大体结束!

更深入理解

我们结合MQ中常见问题,看Redis是如何解决的,来进一步理解Redis。

Stream用在什么样场景

可用作时通信等,大数据分析,异地数据备份等

客户端可以平滑扩展,提高处理能力

消息ID的设计是否考虑了时间回拨的问题?

在 分布式算法 - ID算法设计中, 一个常见的问题就是时间回拨问题,那么Redis的消息ID设计中是否考虑到这个问题呢?

XADD生成的1553439850328-0,就是Redis生成的消息ID,由两部分组成:时间戳-序号。时间戳是毫秒级单位,是生成消息的Redis服务器时间,它是个64位整型(int64)。序号是在这个毫秒时间点内的消息序号,它也是个64位整型。

可以通过multi批处理,来验证序号的递增:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
127.0.0.1:6379> MULTI
OK
127.0.0.1:6379> XADD memberMessage * msg one
QUEUED
127.0.0.1:6379> XADD memberMessage * msg two
QUEUED
127.0.0.1:6379> XADD memberMessage * msg three
QUEUED
127.0.0.1:6379> XADD memberMessage * msg four
QUEUED
127.0.0.1:6379> XADD memberMessage * msg five
QUEUED
127.0.0.1:6379> EXEC
1) "1553441006884-0"
2) "1553441006884-1"
3) "1553441006884-2"
4) "1553441006884-3"
5) "1553441006884-4"

由于一个redis命令的执行很快,所以可以看到在同一时间戳内,是通过序号递增来表示消息的。

为了保证消息是有序的,因此Redis生成的ID是单调递增有序的。由于ID中包含时间戳部分,为了避免服务器时间错误而带来的问题(例如服务器时间延后了),Redis的每个Stream类型数据都维护一个latest_generated_id属性,用于记录最后一个消息的ID。若发现当前时间戳退后(小于latest_generated_id所记录的),则采用时间戳不变而序号递增的方案来作为新消息ID(这也是序号为什么使用int64的原因,保证有足够多的的序号),从而保证ID的单调递增性质。

强烈建议使用Redis的方案生成消息ID,因为这种时间戳+序号的单调递增的ID方案,几乎可以满足你全部的需求。但同时,记住ID是支持自定义的,别忘了!

消费者崩溃带来的会不会消息丢失问题?

为了解决组内消息读取但处理期间消费者崩溃带来的消息丢失问题,STREAM 设计了 Pending 列表,用于记录读取但并未处理完毕的消息。命令XPENDIING 用来获消费组或消费内消费者的未处理完毕的消息。演示如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
127.0.0.1:6379> XPENDING mq mqGroup # mpGroup的Pending情况
1) (integer) 5 # 5个已读取但未处理的消息
2) "1553585533795-0" # 起始ID
3) "1553585533795-4" # 结束ID
4) 1) 1) "consumerA" # 消费者A有3个
2) "3"
2) 1) "consumerB" # 消费者B有1个
2) "1"
3) 1) "consumerC" # 消费者C有1个
2) "1"

127.0.0.1:6379> XPENDING mq mqGroup - + 10 # 使用 start end count 选项可以获取详细信息
1) 1) "1553585533795-0" # 消息ID
2) "consumerA" # 消费者
3) (integer) 1654355 # 从读取到现在经历了1654355ms,IDLE
4) (integer) 5 # 消息被读取了5次,delivery counter
2) 1) "1553585533795-1"
2) "consumerA"
3) (integer) 1654355
4) (integer) 4
# 共5个,余下3个省略 ...

127.0.0.1:6379> XPENDING mq mqGroup - + 10 consumerA # 在加上消费者参数,获取具体某个消费者的Pending列表
1) 1) "1553585533795-0"
2) "consumerA"
3) (integer) 1641083
4) (integer) 5
# 共3个,余下2个省略 ...

每个Pending的消息有4个属性:

  • 消息ID
  • 所属消费者
  • IDLE,已读取时长
  • delivery counter,消息被读取次数

上面的结果我们可以看到,我们之前读取的消息,都被记录在Pending列表中,说明全部读到的消息都没有处理,仅仅是读取了。那如何表示消费者处理完毕了消息呢?使用命令 XACK 完成告知消息处理完成,演示如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
127.0.0.1:6379> XACK mq mqGroup 1553585533795-0 # 通知消息处理结束,用消息ID标识
(integer) 1

127.0.0.1:6379> XPENDING mq mqGroup # 再次查看Pending列表
1) (integer) 4 # 已读取但未处理的消息已经变为4个
2) "1553585533795-1"
3) "1553585533795-4"
4) 1) 1) "consumerA" # 消费者A,还有2个消息处理
2) "2"
2) 1) "consumerB"
2) "1"
3) 1) "consumerC"
2) "1"
127.0.0.1:6379>

有了这样一个Pending机制,就意味着在某个消费者读取消息但未处理后,消息是不会丢失的。等待消费者再次上线后,可以读取该Pending列表,就可以继续处理该消息了,保证消息的有序和不丢失。

消费者彻底宕机后如何转移给其它消费者处理?

还有一个问题,就是若某个消费者宕机之后,没有办法再上线了,那么就需要将该消费者Pending的消息,转义给其他的消费者处理,就是消息转移。

消息转移的操作时将某个消息转移到自己的Pending列表中。使用语法XCLAIM来实现,需要设置组、转移的目标消费者和消息ID,同时需要提供IDLE(已被读取时长),只有超过这个时长,才能被转移。演示如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# 当前属于消费者A的消息1553585533795-1,已经15907,787ms未处理了
127.0.0.1:6379> XPENDING mq mqGroup - + 10
1) 1) "1553585533795-1"
2) "consumerA"
3) (integer) 15907787
4) (integer) 4

# 转移超过3600s的消息1553585533795-1到消费者B的Pending列表
127.0.0.1:6379> XCLAIM mq mqGroup consumerB 3600000 1553585533795-1
1) 1) "1553585533795-1"
2) 1) "msg"
2) "2"

# 消息1553585533795-1已经转移到消费者B的Pending中。
127.0.0.1:6379> XPENDING mq mqGroup - + 10
1) 1) "1553585533795-1"
2) "consumerB"
3) (integer) 84404 # 注意IDLE,被重置了
4) (integer) 5 # 注意,读取次数也累加了1次

以上代码,完成了一次消息转移。转移除了要指定ID外,还需要指定IDLE,保证是长时间未处理的才被转移。被转移的消息的IDLE会被重置,用以保证不会被重复转移,以为可能会出现将过期的消息同时转移给多个消费者的并发操作,设置了IDLE,则可以避免后面的转移不会成功,因为IDLE不满足条件。例如下面的连续两条转移,第二条不会成功。

1
2
127.0.0.1:6379> XCLAIM mq mqGroup consumerB 3600000 1553585533795-1
127.0.0.1:6379> XCLAIM mq mqGroup consumerC 3600000 1553585533795-1

这就是消息转移。至此我们使用了一个Pending消息的ID,所属消费者和IDLE的属性,还有一个属性就是消息被读取次数,delivery counter,该属性的作用由于统计消息被读取的次数,包括被转移也算。这个属性主要用在判定是否为错误数据上。

坏消息问题,Dead Letter,死信问题

正如上面所说,如果某个消息,不能被消费者处理,也就是不能被XACK,这是要长时间处于Pending列表中,即使被反复的转移给各个消费者也是如此。此时该消息的delivery counter就会累加(上一节的例子可以看到),当累加到某个我们预设的临界值时,我们就认为是坏消息(也叫死信,DeadLetter,无法投递的消息),由于有了判定条件,我们将坏消息处理掉即可,删除即可。删除一个消息,使用XDEL语法,演示如下:

1
2
3
4
5
6
7
8
9
10
11
# 删除队列中的消息
127.0.0.1:6379> XDEL mq 1553585533795-1
(integer) 1
# 查看队列中再无此消息
127.0.0.1:6379> XRANGE mq - +
1) 1) "1553585533795-0"
2) 1) "msg"
2) "1"
2) 1) "1553585533795-2"
2) 1) "msg"
2) "3"

注意本例中,并没有删除Pending中的消息因此你查看Pending,消息还会在。可以执行XACK标识其处理完毕!

持久化

Redis是一个内存数据库,所有的数据将保存在内存中,这与传统的MySQL、Oracle、SqlServer等关系型数据库直接把数据保存到硬盘相比,Redis的读写效率非常高。但是保存在内存中也有一个很大的缺陷,一旦断电或者宕机,内存数据库中的内容将会全部丢失。

通常的解决方案是从后端数据库恢复这些数据,但后端数据库有性能瓶颈,如果是大数据量的恢复,1、会对数据库带来巨大的压力,2、数据库的性能不如Redis。

为了弥补这一缺陷,Redis提供了把内存数据持久化到硬盘文件,以及通过备份文件来恢复数据的功能,即Redis持久化机制。避免从后端数据库中恢复数据。

从严格意义上说,Redis服务提供四种持久化存储方案:RDBAOF虚拟内存(VM)和 DISKSTORE。虚拟内存(VM)方式,从Redis Version 2.4开始就被官方明确表示不再建议使用,Version 3.2版本中更找不到关于虚拟内存(VM)的任何配置范例,Redis的主要作者Salvatore Sanfilippo还专门写了一篇论文,来反思Redis对虚拟内存(VM)存储技术的支持问题。

至于DISKSTORE方式,是从Redis Version 2.8版本开始提出的一个存储设想,到目前为止Redis官方也没有在任何stable版本中明确建议使用这用方式。在Version 3.2版本中同样找不到对于这种存储方式的明确支持。从网络上能够收集到的各种资料来看,DISKSTORE方式和RDB方式还有着一些千丝万缕的联系。

最关键的是目前官方文档上能够看到的Redis对持久化存储的支持明确的就只有两种方案(https://redis.io/topics/persistence):RDB和AOF。

RDB持久化

RDB快照用官方的话来说:RDB持久化方案是按照指定时间间隔对你的数据集生成的时间点快照(point-to-time snapshot)。它以紧缩的二进制文件保存Redis数据库某一时刻所有数据对象的内存快照,可用于Redis的数据备份、转移与恢复。

工作原理

既然说RDB是Redis中数据集的时间点快照,先简单了解一下Redis内的数据对象在内存中是如何存储与组织的。

默认情况下,Redis中有16个数据库,编号从0-15,每个Redis数据库使用一个redisDb对象来表示,redisDb使用hashtable存储K-V对象。为方便理解,我以其中一个db为例绘制Redis内部数据的存储结构示意图。

时间点快照也就是某一时刻Redis内每个DB中每个数据对象的状态,先假设在这一时刻所有的数据对象不再改变,我们就可以按照上图中的数据结构关系,把这些数据对象依次读取出来并写入到文件中,以此实现Redis的持久化。然后,当Redis重启时按照规则读取这个文件中的内容,再写入到Redis内存即可恢复至持久化时的状态。

当然,这个前提时我们上面的假设成立,否则面对一个时刻变化的数据集,我们无从下手。我们知道Redis中客户端命令处理是单线程模型,如果把持久化作为一个命令处理,那数据集肯定时处于静止状态。另外,操作系统提供的fork()函数创建的子进程可获得与父进程一致的内存数据,相当于获取了内存数据副本;fork完成后,父进程该干嘛干嘛,持久化状态的工作交给子进程就行了。

很显然,第一种情况不可取,持久化备份会导致短时间内Redis服务不可用,这对于高HA的系统来讲是无法容忍的。所以,第二种方式是RDB持久化的主要实践方式。由于fork子进程后,父进程数据一直在变化,子进程并不与父进程同步,RDB持久化必然无法保证实时性;RDB持久化完成后发生断电或宕机,会导致部分数据丢失;备份频率决定了丢失数据量的大小,提高备份频率,意味着fork过程消耗较多的CPU资源,也会导致较大的磁盘I/O。

AOF持久化

AOF (Append Only File) 持久化:Redis先执行命令,把数据写入内存,然后才记录日志。AOF 是将 Redis 每次写入操作记录下来的过程。AOF 文件是一个文本文件,每次写入操作都会追加到文件末尾。

适用于数据量较大的场景,因为 AOF 文件可以实时保存数据变更,并且可以通过重放 AOF 文件中的写入操作来恢复数据。

BTW: 大多数的数据库采用的是写前日志(WAL),例如MySQL,通过写前日志和两阶段提交,实现数据和逻辑的一致性。

AOF重写过程是由后台进程bgrewriteaof来完成的。主线程fork出后台的bgrewriteaof子进程,fork会把主线程的内存拷贝一份给bgrewriteaof子进程,这里面就包含了数据库的最新数据。然后,bgrewriteaof子进程就可以在不影响主线程的情况下,逐一把拷贝的数据写成操作,记入重写日志。

所以aof在重写时,在fork进程时是会阻塞住主线程的。

  • 重写日志时,有新数据写入怎么办?

    重写过程总结为:“一个拷贝,两处日志”。在fork出子进程时的拷贝,以及在重写时,如果有新数据写入,主线程就会将命令记录到两个aof日志内存缓冲区中。如果AOF写回策略配置的是always,则直接将命令写回旧的日志文件,并且保存一份命令至AOF重写缓冲区,这些操作对新的日志文件是不存在影响的。(旧的日志文件:主线程使用的日志文件,新的日志文件:bgrewriteaof进程使用的日志文件)

    而在bgrewriteaof子进程完成会日志文件的重写操作后,会提示主线程已经完成重写操作,主线程会将AOF重写缓冲中的命令追加到新的日志文件后面。这时候在高并发的情况下,AOF重写缓冲区积累可能会很大,这样就会造成阻塞,Redis后来通过Linux管道技术让aof重写期间就能同时进行回放,这样aof重写结束后只需回放少量剩余的数据即可。

    最后通过修改文件名的方式,保证文件切换的原子性。

    在AOF重写日志期间发生宕机的话,因为日志文件还没切换,所以恢复数据时,用的还是旧的日志文件。

    总结操作

    • 主线程fork出子进程重写aof日志
    • 子进程重写日志完成后,主线程追加aof日志缓冲
    • 替换日志文件

Q&A

Redis线程线程安全吗?

Redis中本身就是单线程的能够保证线程安全问题。
Redis实际上是采用了线程封闭的观念,把任务封闭在一个线程,自然避免了线程安全问题,不过对于需要依赖多个redis操作的复合操作来说,依然需要锁,而且有可能是分布式锁。

多线程模式下,是否存在线程并发安全问题?

在redis的多线程模式下,获取、解析命令,以及输出结果着两个过程,可以配置成多线程执行的,因为它毕竟是我们定位到的主要耗时点,但是命令的执行,也就是内存操作,依然是单线程运行的。所以,Redis 的多线程部分只是用来处理网络数据的读写和协议解析,执行命令仍然是单线程顺序执行,也就不存在并发安全问题。

Redis线程为什么效率这么高?为什么快?

  • 完全基于内存,绝大部分请求是纯粹的内存操作,非常快速。数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1);
  • 数据结构简单,对数据操作也简单,Redis中的数据结构是专门进行设计的;
  • 采用单线程,避免了不必要的上下文切换和竞争条件。也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;
  • 使用多路I/O复用模型,非阻塞IO;
    IO多路复用中有三种方式:select,poll,epoll。需要注意的是,select,poll是线程不安全的,epoll是线程安全的。NIO模式的IO多路复用底层原理
  • 使用底层模型不同,它们之间底层实现方式以及与客户端之间通信的应用协议不一样,Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求;

穿透、雪崩、击穿

用户的数据一般都是存储于数据库,数据库的数据是落在磁盘上的,磁盘的读写速度可以说是计算机里最慢的硬件了。

当用户的请求,都访问数据库的话,请求数量一上来,数据库很容易就奔溃的了,所以为了避免用户直接访问数据库,会用 Redis 作为缓存层。

因为 Redis 是内存数据库,我们可以将数据库的数据缓存在 Redis 里,相当于数据缓存在内存,内存的读写速度比硬盘快好几个数量级,这样大大提高了系统性能。

引入了缓存层,就会有缓存异常的三个问题,分别是缓存雪崩、缓存击穿、缓存穿透

这三个问题也是面试中很常考察的问题,我们不光要清楚地知道它们是怎么发生,还需要知道如何解决它们。

缓存雪崩

通常我们为了保证缓存中的数据与数据库中的数据一致性,会给 Redis 里的数据设置过期时间,当缓存数据过期后,用户访问的数据如果不在缓存里,业务系统需要重新生成缓存,因此就会访问数据库,并将数据更新到 Redis 里,这样后续请求都可以直接命中缓存

那么,当大量缓存数据在同一时间过期(失效)或者 Redis 故障宕机时,如果此时有大量的用户请求,都无法在 Redis 中处理,于是全部请求都直接访问数据库,从而导致数据库的压力骤增,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃,这就是缓存雪崩的问题。

可以看到,发生缓存雪崩有两个原因:

  • 大量数据同时过期;
  • Redis 故障宕机;

不同的诱因,应对的策略也会不同。

大量数据同时过期

针对大量数据同时过期而引发的缓存雪崩问题,常见的应对方法有下面这几种:

  • 均匀设置过期时间;
  • 互斥锁;
  • 双 key 策略;
  • 后台更新缓存;

1. 均匀设置过期时间

如果要给缓存数据设置过期时间,应该避免将大量的数据设置成同一个过期时间。我们可以在对缓存数据设置过期时间时,给这些数据的过期时间加上一个随机数,这样就保证数据不会在同一时间过期。

2. 互斥锁

当业务线程在处理用户请求时,如果发现访问的数据不在 Redis 里,就加个互斥锁,保证同一时间内只有一个请求来构建缓存(从数据库读取数据,再将数据更新到 Redis 里),当缓存构建完成后,再释放锁。未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。

实现互斥锁的时候,最好设置超时时间,不然第一个请求拿到了锁,然后这个请求发生了某种意外而一直阻塞,一直不释放锁,这时其他请求也一直拿不到锁,整个系统就会出现无响应的现象。

3. 双 key 策略

我们对缓存数据可以使用两个 key,一个是主 key,会设置过期时间,一个是备 key,不会设置过期,它们只是 key 不一样,但是 value 值是一样的,相当于给缓存数据做了个副本。

当业务线程访问不到「主 key 」的缓存数据时,就直接返回「备 key 」的缓存数据,然后在更新缓存的时候,同时更新「主 key 」和「备 key 」的数据。

双 key 策略的好处是,当主 key 过期了,有大量请求获取缓存数据的时候,直接返回备 key 的数据,这样可以快速响应请求。而不用因为 key 失效而导致大量请求被锁阻塞住(采用了互斥锁,仅一个请求来构建缓存),后续再通知后台线程,重新构建主 key 的数据。

4. 后台更新缓存

业务线程不再负责更新缓存,缓存也不设置有效期,而是让缓存“永久有效”,并将更新缓存的工作交由后台线程定时更新

事实上,缓存数据不设置有效期,并不是意味着数据一直能在内存里,因为当系统内存紧张的时候,有些缓存数据会被“淘汰”,而在缓存被“淘汰”到下一次后台定时更新缓存的这段时间内,业务线程读取缓存失败就返回空值,业务的视角就以为是数据丢失了。

解决上面的问题的方式有两种。

第一种方式,后台线程不仅负责定时更新缓存,而且也负责频繁地检测缓存是否有效,检测到缓存失效了,原因可能是系统紧张而被淘汰的,于是就要马上从数据库读取数据,并更新到缓存。

这种方式的检测时间间隔不能太长,太长也导致用户获取的数据是一个空值而不是真正的数据,所以检测的间隔最好是毫秒级的,但是总归是有个间隔时间,用户体验一般。

第二种方式,在业务线程发现缓存数据失效后(缓存数据被淘汰),通过消息队列发送一条消息通知后台线程更新缓存,后台线程收到消息后,在更新缓存前可以判断缓存是否存在,存在就不执行更新缓存操作;不存在就读取数据库数据,并将数据加载到缓存。这种方式相比第一种方式缓存的更新会更及时,用户体验也比较好。

在业务刚上线的时候,我们最好提前把数据缓起来,而不是等待用户访问才来触发缓存构建,这就是所谓的缓存预热,后台更新缓存的机制刚好也适合干这个事情。

Redis 故障宕机

  • 服务熔断或请求限流机制;
  • 构建 Redis 缓存高可靠集群;

1. 服务熔断或请求限流机制

因为 Redis 故障宕机而导致缓存雪崩问题时,我们可以启动服务熔断机制,暂停业务应用对缓存服务的访问,直接返回错误,不用再继续访问数据库,从而降低对数据库的访问压力,保证数据库系统的正常运行,然后等到 Redis 恢复正常后,再允许业务应用访问缓存服务。

服务熔断机制是保护数据库的正常允许,但是暂停了业务应用访问缓存服系统,全部业务都无法正常工作

为了减少对业务的影响,我们可以启用请求限流机制,只将少部分请求发送到数据库进行处理,再多的请求就在入口直接拒绝服务,等到 Redis 恢复正常并把缓存预热完后,再解除请求限流的机制。

2. 构建 Redis 缓存高可靠集群

服务熔断或请求限流机制是缓存雪崩发生后的应对方案,我们最好通过主从节点的方式构建 Redis 缓存高可靠集群

如果 Redis 缓存的主节点故障宕机,从节点可以切换成为主节点,继续提供缓存服务,避免了由于 Redis 故障宕机而导致的缓存雪崩问题。

缓存击穿

我们的业务通常会有几个数据会被频繁地访问,比如秒杀活动,这类被频地访问的数据被称为热点数据。

如果缓存中的某个热点数据过期了,此时大量的请求访问了该热点数据,就无法从缓存中读取,直接访问数据库,数据库很容易就被高并发的请求冲垮,这就是缓存击穿的问题。

可以发现缓存击穿跟缓存雪崩很相似,你可以认为缓存击穿是缓存雪崩的一个子集。

应对缓存击穿可以采取前面说到两种方案:

  • 互斥锁方案,保证同一时间只有一个业务线程更新缓存,未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。
  • 不给热点数据设置过期时间,由后台异步更新缓存,或者在热点数据准备要过期前,提前通知后台线程更新缓存以及重新设置过期时间;

缓存穿透

当发生缓存雪崩或击穿时,数据库中还是保存了应用要访问的数据,一旦缓存恢复相对应的数据,就可以减轻数据库的压力,而缓存穿透就不一样了。

当用户访问的数据,既不在缓存中,也不在数据库中,导致请求在访问缓存时,发现缓存缺失,再去访问数据库时,发现数据库中也没有要访问的数据,没办法构建缓存数据,来服务后续的请求。那么当有大量这样的请求到来时,数据库的压力骤增,这就是缓存穿透的问题。

缓存穿透的发生一般有这两种情况:

  • 业务误操作,缓存中的数据和数据库中的数据都被误删除了,所以导致缓存和数据库中都没有数据;
  • 黑客恶意攻击,故意大量访问某些读取不存在数据的业务;

应对缓存穿透的方案,常见的方案有三种。

  • 第一种方案,非法请求的限制;
  • 第二种方案,缓存空值或者默认值;
  • 第三种方案,使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在;

第一种方案,非法请求的限制

当有大量恶意请求访问不存在的数据的时候,也会发生缓存穿透,因此在 API 入口处我们要判断求请求参数是否合理,请求参数是否含有非法值、请求字段是否存在,如果判断出是恶意请求就直接返回错误,避免进一步访问缓存和数据库。

第二种方案,缓存空值或者默认值

当我们线上业务发现缓存穿透的现象时,可以针对查询的数据,在缓存中设置一个空值或者默认值,这样后续请求就可以从缓存中读取到空值或者默认值,返回给应用,而不会继续查询数据库。

第三种方案,使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在。

我们可以在写入数据库数据时,使用布隆过滤器做个标记,然后在用户请求到来时,业务线程确认缓存失效后,可以通过查询布隆过滤器快速判断数据是否存在,如果不存在,就不用通过查询数据库来判断数据是否存在。

即使发生了缓存穿透,大量请求只会查询 Redis 和布隆过滤器,而不会查询数据库,保证了数据库能正常运行,Redis 自身也是支持布隆过滤器的。

那问题来了,布隆过滤器是如何工作的呢?接下来,我介绍下。

布隆过滤器由「初始值都为 0 的位图数组」和「 N 个哈希函数」两部分组成。当我们在写入数据库数据时,在布隆过滤器里做个标记,这样下次查询数据是否在数据库时,只需要查询布隆过滤器,如果查询到数据没有被标记,说明不在数据库中。

布隆过滤器会通过 3 个操作完成标记:

  • 第一步,使用 N 个哈希函数分别对数据做哈希计算,得到 N 个哈希值;
  • 第二步,将第一步得到的 N 个哈希值对位图数组的长度取模,得到每个哈希值在位图数组的对应位置。
  • 第三步,将每个哈希值在位图数组的对应位置的值设置为 1;

举个例子,假设有一个位图数组长度为 8,哈希函数 3 个的布隆过滤器。

在数据库写入数据 x 后,把数据 x 标记在布隆过滤器时,数据 x 会被 3 个哈希函数分别计算出 3 个哈希值,然后在对这 3 个哈希值对 8 取模,假设取模的结果为 1、4、6,然后把位图数组的第 1、4、6 位置的值设置为 1。当应用要查询数据 x 是否数据库时,通过布隆过滤器只要查到位图数组的第 1、4、6 位置的值是否全为 1,只要有一个为 0,就认为数据 x 不在数据库中

布隆过滤器由于是基于哈希函数实现查找的,高效查找的同时存在哈希冲突的可能性,比如数据 x 和数据 y 可能都落在第 1、4、6 位置,而事实上,可能数据库中并不存在数据 y,存在误判的情况。

所以,查询布隆过滤器说数据存在,并不一定证明数据库中存在这个数据,但是查询到数据不存在,数据库中一定就不存在这个数据

总结

缓存异常会面临的三个问题:缓存雪崩、击穿和穿透。

其中,缓存雪崩和缓存击穿主要原因是数据不在缓存中,而导致大量请求访问了数据库,数据库压力骤增,容易引发一系列连锁反应,导致系统奔溃。不过,一旦数据被重新加载回缓存,应用又可以从缓存快速读取数据,不再继续访问数据库,数据库的压力也会瞬间降下来。因此,缓存雪崩和缓存击穿应对的方案比较类似。

而缓存穿透主要原因是数据既不在缓存也不在数据库中。因此,缓存穿透与缓存雪崩、击穿应对的方案不太一样。

我这里整理了表格,你可以从下面这张表格很好的知道缓存雪崩、击穿和穿透的区别以及应对方案。

References

http://redis.io/

http://redis.io/documentation

http://www.w3cschool.cn/redis/redis-intro.html

http://redis.io/download

https://jiajunhuang.com/articles/2021_06_06-redis_source_code_11.md.html

Redis 数据结构之压缩列表 - ziplist